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Summary

 

• The aim of the study was to assess the potential importance for Mediterranean
plants of trade-offs in the response to irradiance and water availability at the
regeneration stage.
• Survival and growth patterns across an experimentally imposed irradiance gradient
(1, 6, 20 and 100% sunlight) were studied in seedlings of eight Mediterranean
woody species, together with the impact of a simulated summer drought.
• We found evidence of some of the trade-offs previously reported for non-
Mediterranean plant communities, such as between survival in the shade and
relative growth rate (RGR) at high light, but no evidence for others, such as between
shade and drought tolerances. The impact of drought on survival and RGR was
stronger in high light than in deep shade.
• The observed species-specific differences in performance provide a mechanistic
basis for niche differentiation at the regeneration stage, contributing to possible
explanations of species coexistence in Mediterranean ecosystems.
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Introduction

 

Interspecific differences in seedling and juvenile survival and
growth along resource gradients are key factors controlling
plant community structure and dynamics (Grubb, 1977;
Pacala & Tilman, 1994; Silvertown, 2004). A number of
studies conducted in cool-temperate and tropical forests have
suggested that survival and growth at such early stages are
major bottlenecks in achieving canopy occupancy (Good &
Good, 1972; Clark & Clark, 1992; Kobe, 1999). Specifically,
it has been suggested that interspecific differences in seedling
and juvenile performance involve a number of strategic trade-
offs that restrict a species to optimal performance at a narrow
range of the successional gradient, and thus these differences

are critically important in explaining community structure and
dynamics (Pacala 

 

et al

 

., 1996; Kobe & Coates, 1997; Baraloto

 

et al.

 

, 2005).
Mediterranean forests experience a recurrent drought

season during the summer, when temperature and radiation
are at their maximums. The differential ability of species to cope
with light and water limitations, particularly during the estab-
lishment stage, is considered a key trait governing community
structure and dynamics (Pigott & Pigott, 1993; Espelta 

 

et al.

 

1995; Castro 

 

et al

 

., 2004; Gómez-Aparicio 

 

et al

 

., 2004;
Zavala & Zea, 2004). Identification of seedling functional
responses along resource gradients and implied trade-offs is
thus critical to achieve a mechanistic understanding of vegeta-
tion dynamics in this region and to assess potential responses
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of Mediterranean plant communities to expected global change
scenarios (Lloret 

 

et al.

 

, 2004; Körner 

 

et al.

 

, 2005). However,
the relevance of trade-offs at juvenile stages, and their con-
sequences, for explaining niche differentiation has only
been explored for a few species (Zavala 

 

et al.

 

, 2000; Zavala &
Zea, 2004). Multispecific comparative studies remain scarce
(Marañón 

 

et al

 

., 2004) and are typically restricted to a small
subset of species (e.g. Broncano 

 

et al.

 

 1998; Rey Benayas

 

et al

 

., 2005). In this study we target five shrub species (

 

Arbutus
unedo

 

, 

 

Pistacia lentiscus

 

, 

 

Pistacia terebinthus

 

, 

 

Quercus coccifera

 

and 

 

Viburnum tinus

 

) and three tree species (

 

Quercus robur

 

,

 

Quercus faginea

 

 and 

 

Quercus ilex

 

 ssp. 

 

ballota

 

) that are typical
components of Mediterranean plant communities (with the
exception of 

 

Q. robur

 

, which is a cool-temperate forest tree
species whose southern distribution overlaps the distributions
of many of the above-mentioned species). Depending on the
disturbance regime and environmental conditions, these species
can coexist locally in mixed forests and shrublands (whether
as canopy-dominant or as understory species) or spatially
segregate to form monospecific stands (particularly 

 

Q. robur

 

,

 

Q. faginea

 

 and 

 

Q. ilex

 

).
In this study, we investigated the seedling responses of eight

Mediterranean woody plant species along an experimental
irradiance gradient and two contrasting water availability
regimes. First, we tested for the existence of differential responses
among species along these gradients that could support regen-
eration niche differentiation in a light–water availability phase
space (

 

sensu

 

 Grubb, 1977). Secondly, we examined whether
seedling responses (survival and growth) conform to the resource
(light and water) trade-offs described or hypothesized for other
plant communities (see reviews by Sack & Grubb, 2002; Sack,
2004). Specifically, we tested: (a) a low-light survivorship vs
high-light growth trade-off (e.g. Kitajima, 1994; Kobe 

 

et al.

 

1995; Pacala 

 

et al

 

., 1996; Kobe, 1999), (b) a low-light vs
high-light growth trade-off (Boardman, 1977; Bazzaz, 1979;
Agyeman 

 

et al

 

., 1999; Williams 

 

et al.

 

 1999), and (c) a drought
vs shade tolerance trade-off, expressed both at an interspecific
(Smith & Huston, 1989) and at an intraspecific level, with
acclimation or adaptation to shade leading to a poor per-
formance under drought (Smith & Huston, 1989; Kubiske

 

et al.

 

 1996).

 

Materials and Methods

 

Experimental design and study site

 

The experimental setting was based on a factorial design
with two factors: irradiance availability and species. The
target species [

 

Arbutus unedo

 

 L., 

 

Pistacia lentiscus

 

 L., 

 

Pistacia
terebinthus

 

 L., 

 

Quercus coccifera

 

 L., 

 

Quercus faginea

 

 Lam.,

 

Quercus ilex

 

 ssp. 

 

ballota

 

 (Desf.) Samp., 

 

Viburnum tinus

 

 L. and

 

Quercus robur

 

 L.] differ widely in seed size (by several orders
of magnitude from 

 

Quercus

 

 species to 

 

A. unedo

 

, 

 

c

 

. 3 to 0.02 g,
respectively; Catalán Bachiller, 1993) and also in leaf habit

(

 

Q. robur

 

 and 

 

P. terebinthus

 

 are deciduous, 

 

Q. faginea

 

 is
semideciduous, and 

 

Q. ilex

 

, 

 

Q. coccifera

 

, 

 

P. lentiscus

 

, 

 

A. unedo

 

and 

 

V. tinus

 

 are evergreen). Seedlings were grown outdoors
from February until October 2002 at a commercial nursery
(Viveros Barbol, Torremocha del Jarama, Madrid, Spain).
The area is located at 40

 

°

 

50

 

′

 

 N, 3

 

°

 

29

 

′

 

 W and at 710 m above
sea level. The climate is continental Mediterranean with
hot and dry summers and cold winters. Mean maximum
and minimum temperatures are 19.7 and 9.9

 

°

 

C, respectively.
Most annual rainfall (372 mm) is received during the spring
and fall (76–102 mm, respectively) and summer rainfall
accounts for 47.1 mm (Instituto Nacional de Meteorología,
2002; values are means for the last 25 years). The soil substrate
(pH 6.5) consisted of a 3 : 1 volume mixture of peat Vriezenveen
PP1 (Potgrond Vriezenveen B.V., Westerhaar, the Netherlands),
and washed river sand. We also added 3 kg m

 

−

 

3

 

 of Guanumus
Angibaud fertilizer (3-35-2 N-P-K; Angiplant, La Rochelle
Cedex, France) and 2 kg m

 

−

 

3

 

 of Plantacote mix 4M fertilizer
(15-10-15 N-P-K, Aglukon Spezialdünger GMBH & Co.
KG, Dusseldorf, Germany).

Seeds were collected from characteristic Iberian localities in
autumn 2001: 

 

Q. robur

 

 from south-east Galicia, 

 

Q. faginea

 

 from
Torrelaguna, Madrid, 

 

Q. ilex

 

 ssp. 

 

ballota

 

 from Sierra Morena,
Jaén, 

 

Q. coccifera

 

 from Cádiz, 

 

P. lentiscus

 

 from Valencia,

 

P. terebinthus

 

 from northern Andalucía, 

 

A. unedo

 

 from Ávila
and 

 

V. tinus

 

 from Moratalla, Murcia. The fact that the seeds
were collected from a single location for each species might
confound ecotypic with interspecific differences. However, the
seeds were collected from populations under typical Mediter-
ranean conditions, and ecotypic variations among populations
of the studied species can be expected to be minor compared
with interspecific differences. Seedlings were germinated
from January to March 2002 and were transplanted to forest
multipot (each pot 330 cm

 

3

 

) containers from early spring to
autumn, with each individual seedling occupying a single pot.
Local air temperature and available photosynthetic photon
flux density (PPFD) were recorded every 5 min throughout
growing season with a data logger (HOBO model H08-
006-04; Onset, Pocasset, MA, USA) and self-made external
sensors that were cross-calibrated with a Li-Cor 190SA sensor
(Li-Cor, Lincoln, NB, USA). Mean daily PPFD (400–700 nm)
over the summer was 41 mol m

 

2

 

 d

 

−

 

1

 

, which is referred to as full
or 100% sunlight hereafter. Four irradiance intensities (1,
6, 20 and 100% sunlight) were established by using layers of
neutral shade cloth supported by metal frames. This gradient
spans the natural range of light availability found in Iberian
forest understories, 20% sunlight being the most common
shade under Mediterranean forest canopies and 6% sunlight
being relatively frequent in humid and subhumid temperate
forests (Gómez 

 

et al.

 

, 2004; Valladares, 2004). Intensities of
approximately 1% sunlight represent really dark understories,
which have been reported for Mediterranean forests (Gratani,
1997) and are common in tropical and cool-temperate forests
(Canham 

 

et al

 

., 1990; Frelich, 2002).
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Water availability was also included in the design of
the experiment to examine the impact of drought on the
responses of seedlings at two of the four irradiance intensities
(i.e. 6 and 100% sunlight). The 100% sunlight level in com-
bination with water shortage was chosen to induce the strongest
drought effect. The 6% sunlight level was chosen to test the
impact of drought at a deep but still relatively common
shade level. We chose not to use the 1% sunlight level not only
because of its rarity in Mediterranean environments but also
because, at extremely low irradiances, soil resource availability
(water and nutrients) may only have a marginal impact in
comparison with the impact of low irradiance, particularly
on shoot growth (Canham 

 

et al

 

., 1996). Two watering levels
(well-watered and water-stressed) were established. Half of
the seedlings at each irradiance intensity were grown under
well-watered conditions and the other half were grown under
water-stressed conditions. The irrigation system consisted of
watering by sprinklers. We monitored soil volumetric water
content (SVC) six times in the growing season for a subsample
of all the treatments (

 

n

 

 = 40 for well-watered treatments and

 

n

 

 = 22 for water-stressed treatments) and recorded the minimum
value reached for each individual. Measurements were
taken before watering to obtain minimum values between two
watering events. SVC was estimated with a portable moisture
measurement instrument based on the time domain reflectom-
etry (TDR) method, TRIME-FM (Imko Micromodultechnik
GMBH, Ettlingen, Germany), connected to a P2 probe. We
compensated for increasing evapotranspiration under high
irradiance by adjusting irrigation intensity and frequency for
each irradiance intensity (Table 1) based on previous trials.
Such a procedure mitigated against uncontrolled interac-
tions between irradiance and water availability (e.g. lower
water availability under high irradiance), although they
could not be completely removed (Fig. 1). SVC values were
above 10% for all the well-watered treatments and below 10%
for all the water-stressed treatments. It was previously shown
that effects of drought on seedling performance were only
noticeable for values below 10% (Valladares 

 

et al

 

., 2005). On
average, SVCs were 26.69 

 

±

 

 0.47% and 7.27 

 

±

 

 0.48% (mean 

 

±

 

95% confidence interval) for well-watered and water-stressed

treatments, respectively. The mean SVCs corresponded to

 

−

 

0.007 and 

 

−

 

2.164 MPa in terms of soil water potential for well-
watered and water-stressed treatments, respectively (calculated
using the filter-paper technique; Deka 

 

et al

 

., 1995). Air mean
temperature (integrated over the entire month, days and
nights included) during the experiment was similar (

 

±

 

 1

 

°

 

C)
across different irradiance environments; for example, in the
hottest month of the year (July), mean temperature over the day
varied from 24.27 

 

±

 

 0.12

 

°

 

C in 100% sunlight to 23.43 

 

±

 

 0.10

 

°

 

C
in 1% sunlight. Mean temperatures from 11:00 h to 16:00 h
integrated over the whole of July varied from 29.99 

 

±

 

 0.23

 

°

 

C
to 32.70 

 

±

 

 0.41

 

°

 

C for 1 and 100% sunlight, respectively.
A total of 64–88 healthy seedlings per irradiance intensity and
species were used for the experiment. Seedlings were arranged
along four blocks randomly distributed within four shade
frames corresponding to each irradiance intensity. Two
extra blocks of 22 seedlings per species were included in the
water-stressed treatments for the 6 and 100% sunlight levels.

Survival and growth measurements

We carried out a total of seven mortality censuses during
the experiment. Censuses were performed on 24 June (only in
the well-watered set of seedlings), 28 August, 5 September, 15
September, 23 September, 30 September, and 5 October for
both well-watered and water-stressed seedlings. We labelled as
dead individuals those that had lost all their aerial structures,
did not have any photosynthetically active leaves (i.e. green

Fig. 1 Minimum water content for each 
species, irradiance and water combination 
(left panel, well-watered treatment; right 
panel, well-stressed treatment). Vertical bars 
denote 0.95 confidence intervals. Genera are 
as follows: A., Arbutus; P., Pistacia; Q., 
Quercus; V., Viburnum.

Table 1 Watering times and frequency for each irradiance × water 
combination
 

Irradiance 
(%)

Water treatment

Well-watered conditions Water-stressed conditions

100 60 min every other day 30 min every other day
20 30 min every other day
6 10 min every 3 d 5 min every 3–4 d
1 10 min every 3 d
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and bendy leaves) and exhibited loss of stem flexibility in the
upper third portion of the plant. Two rain events were registered
on 6 and 14 October which produced 10.9 and 1.24 mm,
respectively (data provided by the staff of the nursery). No
resprout was observed, however, after these early autumn rain
events. Seedlings were sprayed with a fungicide solution (50%
Carbendazyme, Fungicida Polivalente; COMPO Agricultura
SL, Barcelona, Spain) twice during the experiment in order to
control fungal infections. None of the mortality events showed
signs of a fungal infection-mediated death.

We evaluated seedling growth responses both as relative growth
rate in biomass (hereafter RGR) and as relative diameter and
height growth to account for plastic adjustments in crown
architecture. We recorded seedling height (length of the main
stem) and collar diameter for each individual twice in the
growing season (i.e. early summer and early autumn). Stem
diameter was measured at the base of the main stem with
a calliper (accuracy 0.01 mm). We estimated relative height
and diameter growth as (ln G2 − ln G1)/(t2 − t1), G1 and G2 being
the height or diameter in time 1 and 2 (t1 and t2, respectively).
This was calculated for the whole set of individual observa-
tions. A first sample of five seedlings per species (with the
exception of V. tinus, for which these data are missing) was
harvested, dried to constant mass and weighed before placing
the seedlings into the treatments. Another sample of 12–20
seedlings per treatment (light, species and water combination)
was harvested at the end of the experiment (mid-October).
RGR was calculated as (lnW2 − lnW1)/(t2 − t1), W1 and W2
being the dry masses in time 1 and 2 (t1 and t2, respectively).
Cotyledon masses were excluded. Absolute growth in terms of
biomass, diameter and height was also calculated.

Data analysis

The Kaplan–Meier product-limit method was used to estimate
the survival function directly from the survival times in our
mortality data set. Independent analyses were used for each
irradiance, species and water combination. The χ2 test was used
to test significant survival differences (for multiple simultaneous
comparisons). Cox’s F-test was used afterwards to test for
differences in survival functions among species for each
irradiance × water combination and among irradiance or water
levels for each species. RGR analysis was performed with the
software CLASSICAL PLANT GROWTH ANALYSIS version 1.1 (Hunt
et al., 2002). Differences in RGR among treatments were
tested for significance using the 95% confidence limits provided
by the software. Differences across factors (species, irradiance
and water) in absolute growth (biomass, height and diameter)
and relative height and diameter growth were analysed by
analysis of variance (ANOVA). Fisher’s least significant difference
(LSD) test was used for post hoc analysis. Before ANOVA, data
were checked for normality and homogeneity of variances, and
were log-transformed to correct deviations from these assump-
tions when needed (Zar, 1999). Spearman rank correlations

were used to test for specific relations among key variables. All
the statistical analysis was performed using STATISTICA version
6.0 (Statsoft Inc., Tulsa, OK, USA).

Results

Seedling survivorship

We found interspecific differences in seedling survival at all
irradiance intensities (Fig. 2). At the intraspecific level, irradiance
had the greatest impact at 1% sunlight. In contrast, there were
no statistically significant differences in survival within
species among the irradiance intensities of 6, 20 and 100%
sunlight. In deep shade (1% sunlight), A. unedo and P. terebinthus
experienced the lowest survival rates while Quercus species
experienced the highest survival rates (Q. robur and Q. coccifera
were the most shade tolerant and Q. faginea and Q. ilex the
least shade tolerant of the Quercus species). Relative to the other
species, V. tinus and P. lentiscus showed intermediate survival
rates in deep shade (Fig. 2). Under high-light conditions, Quercus
species still experienced the highest survival rates. A. unedo had
the same survival rate as Q. ilex and Q. faginea. P. terebinthus
had the lowest survival rate in 100% sunlight while V. tinus and
P. lentiscus had intermediate survival rates (similar to those
found under deep shade). P. terebinthus exhibited consistently
low survival rates across the irradiance gradient, which can be
interpreted in terms of poor acclimation of this species to the
experimental conditions in the nursery. Drought had a strong
impact on the responses of the species to irradiance, and
species survival rankings differed greatly among water-stress
treatments. For example, at 100% sunlight, Quercus species
experienced the second lowest survival rates after P. terebinthus.
In contrast, A. unedo and V. tinus, which had low survival rates
in deep shade, experienced the highest survival rates in the
water-stress treatment. At 6% sunlight, Q. robur experienced
a remarkably low survival rate. The survival rate for Q. ilex was
much higher than that for Q. robur, but it was still lower than
those of the other species, which were statistically indistingui-
shable (Fig. 2). In general, the impact of drought on survival
was higher in 100% sunlight than in 6% sunlight (Fig. 2). We
did not find a significant correlation (Spearman’s R = −0.311;
P = 0.453) between shade and drought tolerance in terms of
survival (1% sunlight under well-watered conditions and
100% sunlight under water-stressed conditions, respectively).

Absolute and relative seedling growth

As light decreased, so did the absolute biomass growth of the
species (Table 2). For Q. ilex, Q. coccifera, P. terebinthus and
A. unedo, maximum absolute biomass growth was achieved
at the maximum light intensity (100% sunlight). The other
species did not show higher absolute biomass growth in 100%
sunlight than in 20% sunlight. The species ranking in absolute
biomass growth was Q. robur  > Q. ilex > Q. coccifera > Q. faginea
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Fig. 2 Cumulative survival proportion over 
time for each species and irradiance × water 
availability combination studied. Analysis was 
performed with the Kaplan–Meier product 
limit. The letter codes indicate homogeneous 
groups (χ2 test).

Table 2 Absolute biomass growth for each species and treatment
 

Species

Absolute biomass growth (g) 

Treatment 

1% ww 6% ww 6% ws 20% ww 100% ww 100% ws 

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

Arbutus unedo 0.66 0.12 c(c) 1.08 0.16 c(d) 1.03 0.13 c(d) 2.62 0.44 b(d) 4.09 0.79 a(c) 1.37 0.09 c(ef)
Pistacia lentiscus 0.31 0.05 d(c) 1.03 0.19 c(d) 1.06 0.15 c(d) 3.11 0.40 a(cd) 3.63 0.38 a(c) 1.84 0.16 b(de)
Pistacia terebinthus 0.75 0.17 d(c) 0.86 0.19 d(d) 1.04 0.12 d(d) 2.45 0.38 b(d) 4.41 0.51 a(c) 1.95 0.69 bc(cde)
Quercus coccifera 2.16 0.30 c(b) 2.24 0.32 c(c) 1.92 0.33 c(c) 3.96 0.52 b(c) 5.91 0.64 a(ab) 2.61 0.24 c(c)
Quercus faginea 1.74 0.31 b(b) 2.48 0.27 b(c) 2.29 0.16 b(c) 3.96 0.41 a(c) 4.61 0.43 a(bc) 2.27 0.10 b(cd)
Quercus ilex 3.37 0.21 c(a) 4.57 0.37 c(b) 4.20 0.20 c(a) 5.77 0.52 b(b) 7.28 0.33 a(a) 4.11 0.43 c(b)
Quercus robur 3.57 0.33 c(a) 5.48 0.45 b(a) 3.05 0.20 c(b) 7.80 0.56 a(a) 6.83 0.64 a(a) 4.98 0.34 b(a)
Viburnum tinus 0.56 0.07 b(c) 0.52 0.09 b(d) 0.50 0.06 b(d) 0.87 0.12 ab(e) 1.01 0.25 a(d) 0.68 0.11 ab(f)

All irradiance intensity × water supply combinations are given. The first letter code indicates homogeneous groups [analysis of variance 
(ANOVA); Fisher’s test, P = 0.05] along the irradiance × water availability gradient, with the same letter within a row denoting no significant 
difference. The letter code in parentheses indicates homogeneous groups (ANOVA; Fisher’s test, P = 0.05) across species, with the same letter 
within a column denoting no significant difference.
SE, standard error; ww, well-watered treatment; ws, water-stressed treatment.
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> (P. lentiscus = A. unedo = P. terebinthus) > V. tinus. This ranking
did not change substantially along the light gradient (but see
Table 2 for details). Q. robur had higher total dry mass than
Q. ilex in 6 and 20% sunlight but not at the two extreme
irradiance intensities (i.e 1 and 100% sunlight), where these
two species did not differ. V. tinus exhibited lower total dry
mass than P. lentiscus, P. terebinthus and A. unedo in 20 and
100% sunlight but not in 1 and 6% sunlight. In 6% sunlight,
drought decreased total dry mass for Q. robur. However, drought
decreased the total dry mass for all the species but V. tinus in
100% sunlight (Table 2). Absolute diameter growth and absolute
height growth were highly correlated with absolute biomass
growth in the experiment (Spearman’s R = 0.960; P = 0.001;
Spearman’s R = 0.830; P = 0.001, respectively).

Along the irradiance gradient, Quercus species showed
significantly lower relative height and diameter growth rates than
the other species (Fig. 3). Maximum relative height growth rates
tended to occur at 20% sunlight, while maximum relative
diameter growth rates occurred at either 6 or 100% sunlight
for all the species (Fig. 3). Quercus species were indistinguishable
from each other in relative height growth but did differ signi-
ficantly in relative diameter growth. At low light intensities
(i.e. 1 and 6% sunlight), Q. coccifera was the Quercus species
with the highest relative diameter growth rates. At 100%
sunlight, Q. ilex became the species with the highest relative
diameter growth rate (significantly higher than that of Q. faginea).
V. tinus had intermediate relative height and diameter growth
rates (between those of the Quercus species and the other
species). At low and intermediate light intensities, V. tinus
exhibited relative growth rates (in height and diameter) similar
to those of Pistacia species and A. unedo, but at the highest

irradiance intensity it experienced growth rates closer to those
of Quercus species. Pistacia species and A. unedo showed higher
RGR mean values than those of Quercus species along
the irradiance gradient, but differences were not statistically
significant (Fig. 3).

Drought had a small impact on relative height growth (data
not shown) but a major impact on relative diameter growth. The
effect of drought on relative diameter growth was stronger in 6%
than in 100% sunlight. At 100% sunlight, drought decreased
relative diameter growth in Q. robur and A. unedo, but exerted
no effect in the other species. However, in 6% sunlight,
drought decreased relative diameter growth for all the species
except Q. robur, Q. faginea and P. terebinthus (Fig. 4).

RGR mean values in 100% sunlight and well-watered
conditions were consistently higher than the RGR mean
values in 100% sunlight under water-stressed conditions for
all the species. However, this not was the case in 6% sunlight
(Fig. 5), where the limited light suppressed growth so strongly
(Quercus species did not experience significantly positive RGR
values in 6% sunlight) that no effect of drought could be
detected. A significant negative relationship between survival
in deep shade and growth in high light was found in our set
of species. Thus, species with high growth in 100% sunlight
experienced low survival rates in shade and vice versa. This
relationship was found both for RGR and for relative diameter
growth, but not for relative height growth, probably because
of the confounding influence of elongation in the shade (Fig. 6).
We also found a negative relationship between relative diameter
growth at low light and relative diameter growth at high
light, but a positive relationship between low-light RGR and
high-light RGR (Fig. 7). No relationship was found between

Fig. 3 Relative height growth, relative 
diameter growth and relative growth rate 
(RGR) along the irradiance gradient for each 
species. Vertical bars denote 95% confidence 
intervals. Genera are as follows: A., Arbutus; 
P., Pistacia; Q., Quercus; V., Viburnum.
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relative height growth in low light and relative height growth
in high light (data not shown).

Discussion

Seedling responses and trade-offs along the irradiance 
gradient

Our results have shown important species-specific differences
in survival and growth along the irradiance gradient imposed
in the experiment. In agreement with previous studies con-
ducted with tropical species (Bloor, 2003), the limiting effects
of irradiance were only apparent under very deep shade (1%
sunlight), suggesting that Mediterranean species generally exhibit
a degree of shade tolerance during the early establishment
stages. However, there is increasing evidence that both light
and water can be limiting for woody seedling establishment

in heterogeneous Mediterranean environments (Hastwell &
Facelli, 2003; Maestre et al., 2003a).

The link found between survival and growth was consistent
with a trade-off between survival in low light and growth in high
light (Kitajima, 1994; Kobe et al., 1995; Pacala et al., 1996;
Kobe, 1999). This trade-off, however, was found with respect
to relative diameter growth and RGR but not with respect to
relative height growth, probably because of the confounding
effect of elongation. Elongation in response to shade is a
well-documented shade avoidance strategy that results in
biomechanically weak phenotypes with poor light interception
efficiency (Pearcy et al., 2005).

Our results provide contradictory evidence regarding the
existence of low- vs high-light growth trade-offs (Boardman,
1977; Bazzaz, 1979; Agyeman, 1999; Williams et al., 1999)
with the direction of the trade-off changing depending on the
growth estimate considered. For example, we found a negative

Fig. 4 Drought impact on relative height and 
diameter growth for each species in 100 and 
6% sunlight. Vertical bars denote the standard 
error. * denotes significant differences 
between water treatments (analysis of 
variance; Fisher’s test, P < 0.05). Genera are as 
follows: A., Arbutus; P., Pistacia; Q., Quercus; 
V., Viburnum.

Fig. 5 Mean values within species for relative 
growth rate (RGR) for the four combinations 
of irradiance and water availability studied. 
Vertical bars denote standard errors (n = 
12–20). ww, well-watered conditions; ws, 
water-stressed conditions. Genera are as 
follows: A., Arbutus; P., Pistacia; Q., Quercus; 
V., Viburnum.
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relationship between relative diameter growth in low light
vs relative diameter growth in high light, in agreement with
some studies (Boardman, 1977; Bazzaz, 1979; Agyeman,
1999; Williams et al., 1999), a positive relationship between
whole-plant growth in low light vs whole-plant growth in
high light, in agreement with others (Loach, 1970; Ramos &
Grace, 1990; Chazdon, 1992; Kitajima, 1994; Grubb et al.,
1996; Bloor & Grubb, 2003), and no significant relationship
between relative height growth in high light vs relative height
growth in low light (data not shown). Thus, the results
obtained for RGR, which is relatively independent of alloca-
tion, partially support the idea that shade-intolerant species
grow faster than shade-tolerant species both in deep shade and
under high light, as suggested by Kitajima (1994) and Bloor
& Grubb (2003).

The trade-off between survivorship in the shade and growth
in high light has been associated with two main general plant
strategies, the acquisitive vs the conservative strategy (Diaz
et al., 2004). Large seeds have been associated with the con-
servative strategy (Castro-Diez & Montserrat-Marti, 2003;
Diaz et al., 2004), and in general with a stress-tolerance strat-
egy (Hewitt, 1998; Reich et al., 2003). Seed size influences
interspecific responses to light and water availability at the
seedling stage, with species having larger seed size performing
better under resource-limiting conditions than species having
smaller seed size (Osunkoya et al., 1994; Coomes & Grubb,
2003). For example, larger seeds benefit seedlings in conditions
of shading (Hewitt, 1998; Bond et al. 1999) and nutrient
limitation (Jurado & Westoby, 1992; Seiwa, 2000). In agree-
ment with this idea, we found a significant relationship between

Fig. 6 Survival in deep shade vs relative height 
growth, relative diameter growth and relative 
growth rate (RGR) in high-light conditions. The 
values of Spearman’s R and significance are only 
shown for statistically significant correlations. 
Genera are as follows: A., Arbutus; P., Pistacia; 
Q., Quercus; V., Viburnum.

Fig. 7 Low-light growth vs high-light growth 
for relative growth rate (RGR) and relative 
diameter growth. Spearman’s R and significance 
are shown. Genera are as follows: A., Arbutus; 
P., Pistacia; Q., Quercus; V., Viburnum.
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growth and seed size and between survival and seed size in
our species. Seed size was positively related to survival and
absolute growth in both deep shade and high light, but it was
negatively related to relative growth (Table 3). The effect of
seed size on survival changed meaningfully with light inten-
sity, with large seed size enhancing survival significantly at low
light but not significantly at high light. Thus, seed size had
a critical effect on species-specific differences in seedling
performance along the irradiance gradient. The large range of
seed sizes in the present study may have increased the relative
magnitude of this effect. Correlations and constraints identi-
fied at early stages may well weaken during subsequent growth;
for example, the linkage of RGR with seed size can dissipate,
leading to species cross-overs in RGR (Sack & Grubb, 2001;
Kitajima & Bolker, 2003; Baraloto et al., 2005). Studies on
seedlings have obvious limitations. Although germination and
seedling establishment are major demographic bottlenecks
in Mediterranean ecosystems, studies of responses in saplings,
juveniles and adults are required to accurately evaluate the
relevance of these trade-offs for community structure and
dynamics.

Seedling responses to combined shade and drought

Various hypotheses have been proposed to explain the effects
of drought on seedling performance along irradiance gradients
(for a review, see Sack & Grubb, 2002; Sack, 2004). The trade-
off hypothesis states that drought will be increasingly harmful
under shadier conditions because of conflicts between the
simultaneous demands for allocation of resources to cope
with above-ground and below-ground limitations (Smith &
Huston, 1989; Kubiske et al., 1996). The facilitation hypothesis
suggests that, under drought, the negative effects of light
limitation can be offset by its benefits for plant water status
(Callaway, 1995; Holmgren, 2000; Flores & Jurado, 2003;
Prider & Facelli, 2004). Finally, it has been suggested that
drought has a fixed proportional impact along the irradiance
gradient (Sack & Grubb, 2002; Sack, 2004).

On the whole, we found that the impact of drought on
both growth and survival was higher in high light than under
shade, as found by Sack (2004) and in agreement with the
facilitation hypothesis. Indeed, shade has been hypothesized
to have a positive effect under drought (e.g. Holmgren, 2000),
as part of a facilitative effect by which the negative effects of
irradiance suppression are offset by its benefits for plant water
status (Callaway, 1995; Canham et al., 1996). This facilitative
effect of shade under dry conditions has been found to be a
mechanism involved in establishment and regeneration
processes in Mediterranean environments (e.g. Maestre et al.,
2003b). The impact of drought under high-light conditions
is presumably greater as a result of tissue desiccation, which
together with high temperature and photo-oxidative stress
(Valladares, 2001) has a direct impact on seedling survival and
growth. Nevertheless, the different results found here with
another growth estimator (relative diameter growth) highlight
the importance of using several performance estimators when
testing trophic trade-offs.

Finally, the interspecific trade-off hypothesis states that shade-
tolerant species are more vulnerable to drought than light-
demanding species (Smith & Huston, 1989). The existence of
such a trade-off was not detectable in our experiment and we
did not find a significant relationship between drought and
shade tolerance. In fact, species such as P. terebinthus showed
low relative tolerance of both shade and drought. Other experi-
ments (Sack, 2004) have shown that shade and drought
tolerances vary independently among species, indicating a
high potential for species niche differentiation along combined
irradiance and water availability gradients.

Although large seeds have been linked to drought tolerance
(Leishman & Westoby, 1994; Seiwa et al., 2002), in this
study the species with the largest seeds (Quercus) were found
to experience the highest mortality rates under drought. It has
been suggested that there is a whole suite of traits linked to
both shade and drought tolerance (Caspersen & Kobe, 2001;
Sack et al., 2003), but also that no one narrowly defined
functional type is associated with the combined tolerance

Table 3 Spearman correlations between survival or growth and log seed biomass for the most extreme irradiance intensities (1 and 100% sunlight)
 

Correlation

1% sunlight 100% sunlight

Spearman’s R P-value Spearman’s R P-value

Survival vs log seed biomass (mg) 0.922 0.001* 0.602 0.114
RGR vs log seed biomass (mg) −0.714 0.070 −0.714 0.070
Relative height growth vs log seed biomass (mg) −0.500 0.207 −0.809 0.015*
Relative diameter growth vs log seed biomass (mg) −0.547 0.160 −0.881 0.003*
Absolute biomass growth vs log seed biomass (mg) 0.810 0.015* 0.690 0.058
Absolute height growth vs log seed biomass (mg) 0.762 0.020* 0.714 0.046*
Absolute diameter growth vs log seed biomass (mg) 0.786 0.021* 0.595 0.119

*Significant correlations at P = 0.05.
RGR, relative growth rate.



New Phytologist (2006) 170: 795–806 www.newphytologist.org © The Authors (2006). Journal compilation © New Phytologist (2006)

Research804

of shade and drought (Sack et al., 2003). Seed reserves can
supply all resources but water (Kitajima, 2002) and despite
seed size could indirectly underlie certain resistance to drought
by producing big seedlings that dry out slower than small
seedlings (Coomes & Grubb, 2003). It is quite likely that fac-
tors other than seed size are responsible for drought tolerance
during the establishment phase.
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